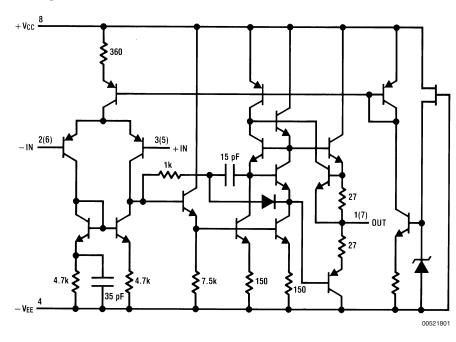
January 2003

LM833 **Dual Audio Operational Amplifier General Description**

The LM833 is a dual general purpose operational amplifier designed with particular emphasis on performance in audio systems.

National Semiconductor

This dual amplifier IC utilizes new circuit and processing techniques to deliver low noise, high speed and wide bandwidth without increasing external components or decreasing stability. The LM833 is internally compensated for all closed loop gains and is therefore optimized for all preamp and high level stages in PCM and HiFi systems.

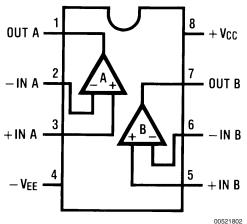

The LM833 is pin-for-pin compatible with industry standard dual operational amplifiers.

Features

■ Wide dynamic range: >140dB Low input noise 4.5nV/√Hz voltage: High slew rate: 7 V/µs (typ); 5V/µs (min) 15MHz (typ); 10MHz (min) ■ High gain bandwidth: ■ Wide power bandwidth: 120KHz 0.002% Low distortion: Low offset voltage: Large phase margin: Available in 8 pin MSOP

package

Schematic Diagram (1/2 LM833)



0.3mV

60°

LM833

Connection Diagram

Order Number LM833M, LM833MX, LM833N, LM833MM or LM833MMX See NS Package Number M08A, N08E or MUA08A

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage V _{CC} -V _{EE}	36V
Differential Input Voltage (Note 3) VI	±30V
Input Voltage Range (Note 3) VIC	±15V
Power Dissipation (Note 4) P _D	500 mW
Operating Temperature Range TOPR	−40 ~ 85°C

DC Electrical Characteristics (Notes 1, 2)

 $(T_A = 25^{\circ}C, V_S = \pm 15V)$

d,	Soldering Information		
e/	Dual-In-Line Package		
	Soldering (10 seconds)	260°C	
V	Small Outline Package		
V	(SOIC and MSOP)		
V	Vapor Phase (60 seconds)	215°C	
V	Infrared (15 seconds)	220°C	
С	ESD tolerance (Note 5)	1600V	

Storage Temperature Range T_{STG}

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Vos	Input Offset Voltage	$R_{S} = 10\Omega$		0.3	5	mV
l _{os}	Input Offset Current			10	200	nA
I _B	Input Bias Current			500	1000	nA
A _V	Voltage Gain	$R_L = 2 k\Omega, V_O = \pm 10V$	90	110		dB
V _{OM}	Output Voltage Swing	$R_L = 10 k\Omega$	±12	±13.5		V
		$R_L = 2 k\Omega$	±10	±13.4		V
V _{CM}	Input Common-Mode Range		±12	±14.0		V
CMRR	Common-Mode Rejection Ratio	$V_{IN} = \pm 12V$	80	100		dB
PSRR	Power Supply Rejection Ratio	V _S = 15~5V, -15~-5V	80	100		dB
l _Q	Supply Current	V _O = 0V, Both Amps		5	8	mA

AC Electrical Characteristics

 $(T_A = 25^{\circ}C, V_S = \pm 15V, R_L = 2 \text{ k}\Omega)$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
SR	Slew Rate	$R_L = 2 k\Omega$	5	7		V/µs
GBW	Gain Bandwidth Product	f = 100 kHz	10	15		MHz

Design Electrical Characteristics

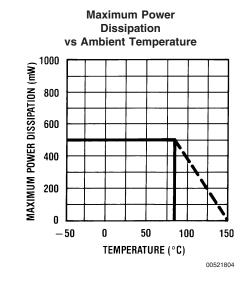
 $(T_A = 25^{\circ}C, V_S = \pm 15V)$ The following parameters are not tested or guaranteed.

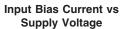
Symbol	Parameter	Conditions	Тур	Units
$\Delta V_{OS} / \Delta T$	Average Temperature Coefficient		2	µV/°C
	of Input Offset Voltage			
THD	Distortion	$R_{L} = 2 k\Omega, f = 20 - 20 kHz$	0.002	%
		$V_{OUT} = 3 \text{ Vrms}, A_V = 1$		
e _n	Input Referred Noise Voltage	$R_{\rm S}$ = 100 Ω , f = 1 kHz	4.5	nV/√Hz
i _n	Input Referred Noise Current	f = 1 kHz	0.7	pA/√Hz
PBW	Power Bandwidth	V_{O} = 27 V_{pp} , R_{L} = 2 k Ω , THD \leq 1%	120	kHz
f _U	Unity Gain Frequency	Open Loop	9	MHz
ф _М	Phase Margin	Open Loop	60	deg
	Input Referred Cross Talk	f = 20~20 kHz	-120	dB

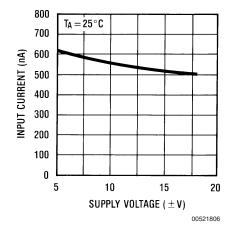
 $-60 \sim 150^\circ C$

Design Electrical Characteristics (Continued)

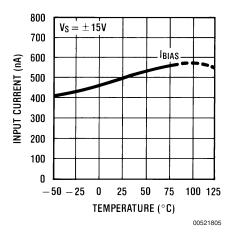
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. *Electrical Characteristics* state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

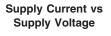

Note 2: All voltages are measured with respect to the ground pin, unless otherwise specified.

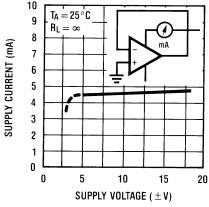

Note 3: If supply voltage is less than $\pm 15V$, it is equal to supply voltage.

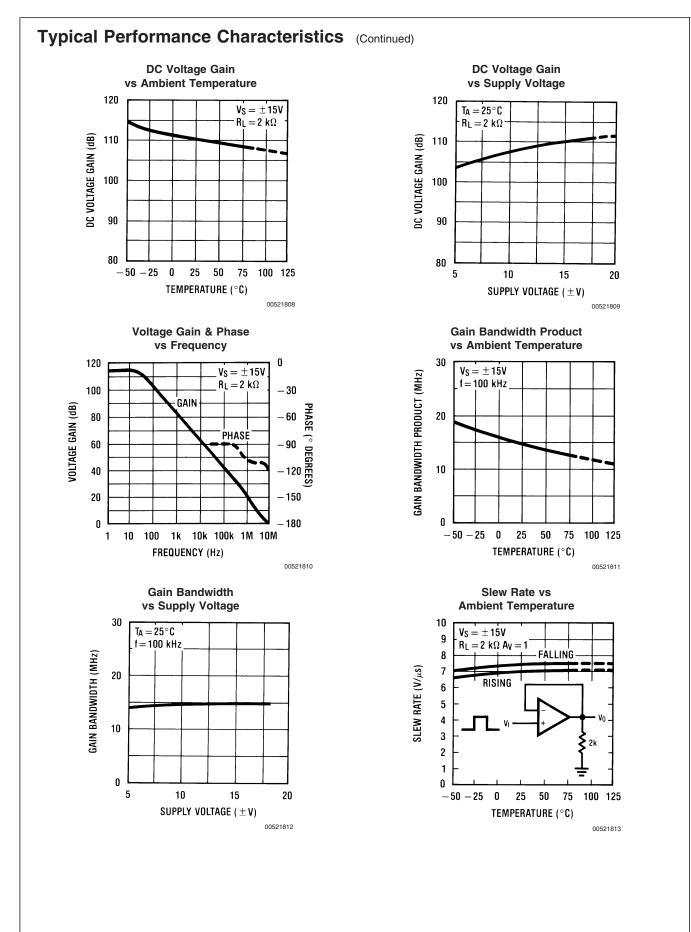

Note 4: This is the permissible value at $T_A \leq 85^{\circ}C.$

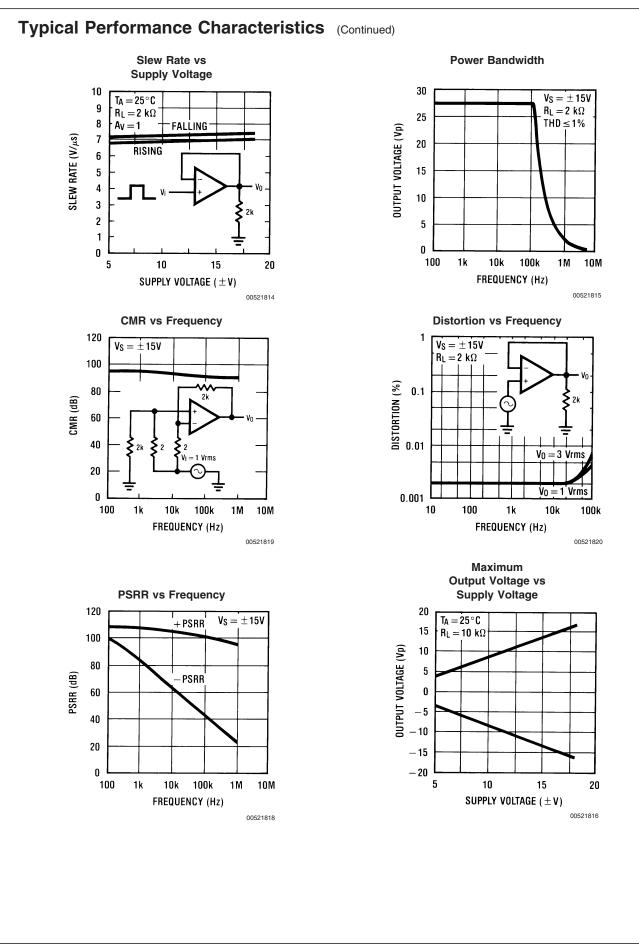
Note 5: Human body model, 1.5 k Ω in series with 100 pF.

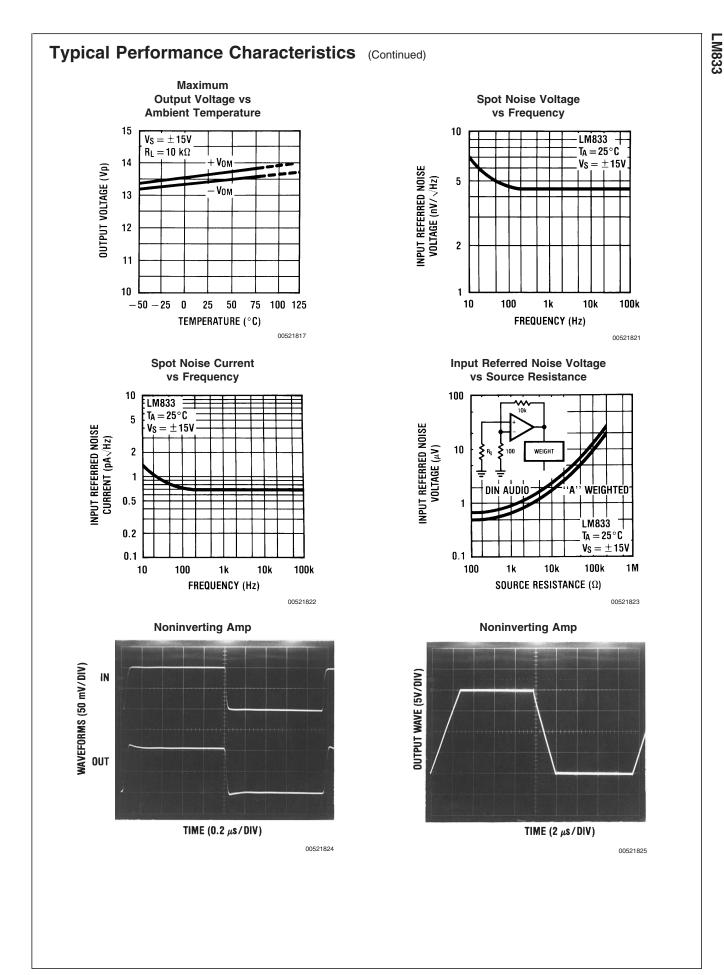

Typical Performance Characteristics

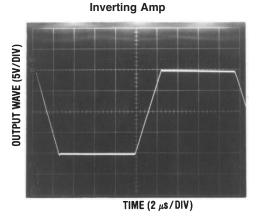





Input Bias Current vs Ambient Temperature

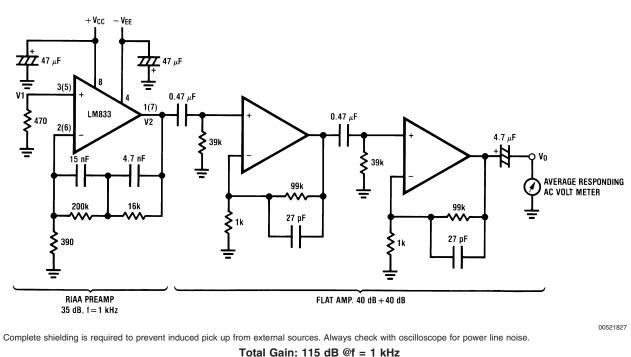





00521807

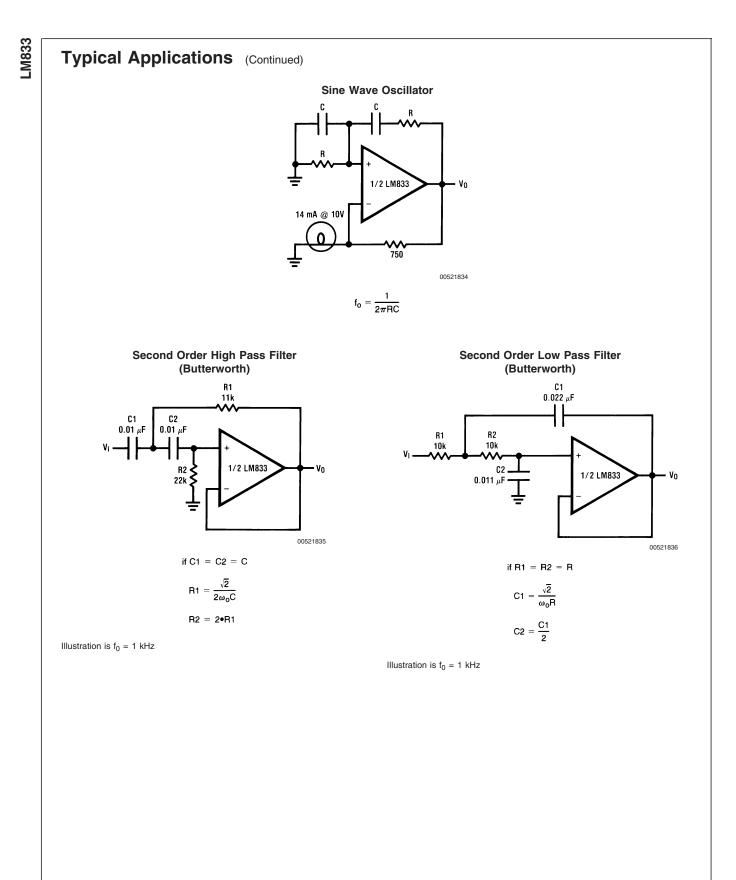
Typical Performance Characteristics (Continued)

00521826

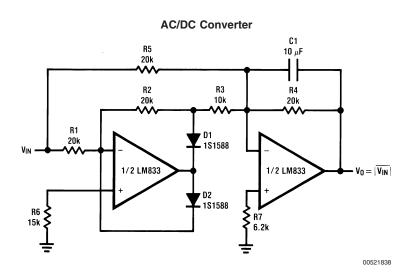

Application Hints

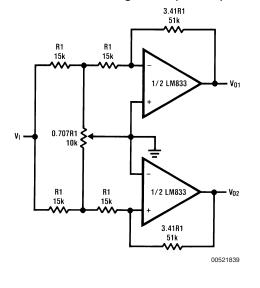
The LM833 is a high speed op amp with excellent phase margin and stability. Capacitive loads up to 50 pF will cause little change in the phase characteristics of the amplifiers and are therefore allowable.

Capacitive loads greater than 50 pF must be isolated from the output. The most straightforward way to do this is to put

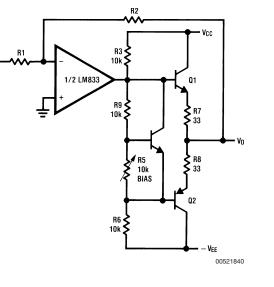

a resistor in series with the output. This resistor will also prevent excess power dissipation if the output is accidentally shorted.

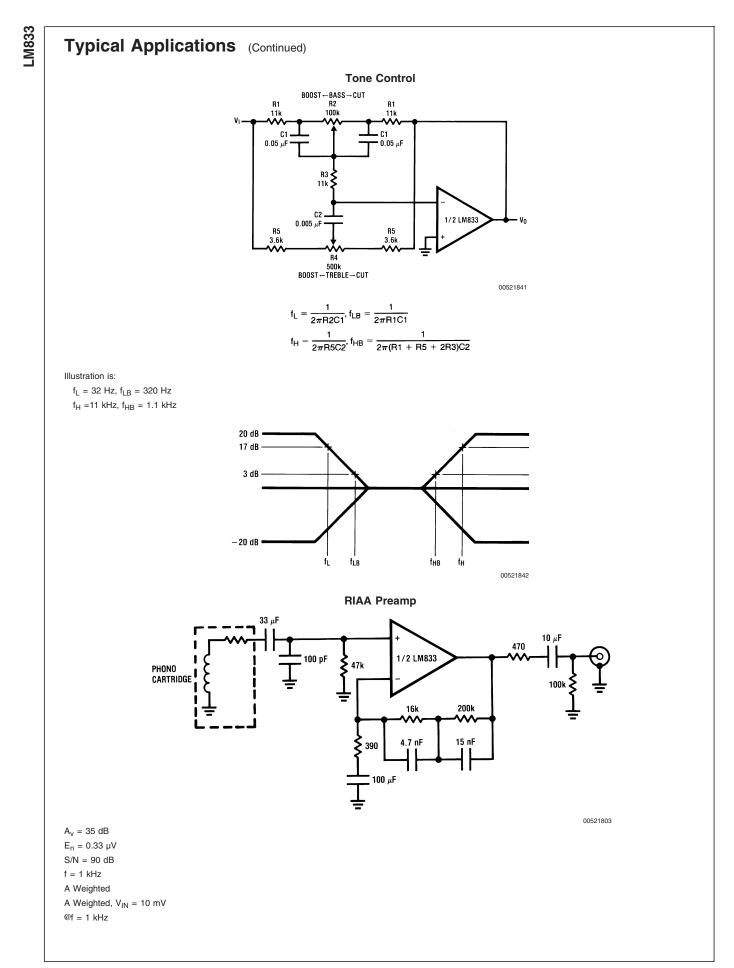
Noise Measurement Circuit

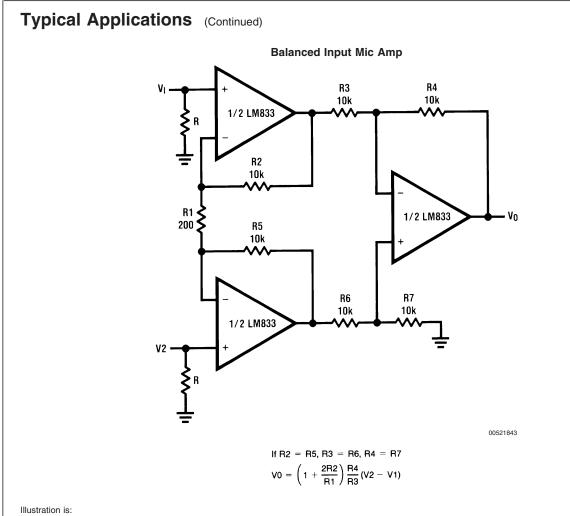

Input Referred Noise Voltage: $e_n = V0/560,000$ (V)



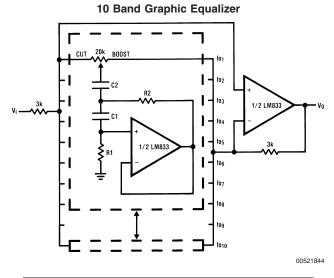
Typical Applications (Continued) State Variable Filter R2 10k C1 0.01 μF C1 R1 16k R2 R1 0.01 μF 10k 16k 1/2 LM833 RG 1/2 LM833 1/2 LM833 VBP VLP Vнр 10k \sim Ī ÷ R2 10k RO 556 00521837 $f_0 = \frac{1}{2\pi C 1 R I}, Q = \frac{1}{2} \left(1 + \frac{R2}{R0} + \frac{R2}{RG}\right), A_{BP} = QA_{LP} = QA_{LH} = \frac{R2}{RG}$


Illustration is $f_0 = 1$ kHz, Q = 10, A_{BP} = 1




2 Channel Panning Circuit (Pan Pot)

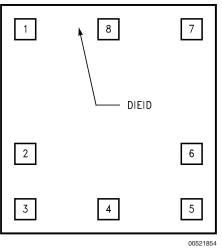
Line Driver



V0 = 101(V2 - V1)

Typical Applications (Continued)

fo(Hz)	C ₁	C ₂	R ₁	R ₂
32	0.12µF	4.7µF	75kΩ	500Ω
64	0.056µF	3.3µF	68kΩ	510Ω
125	0.033µF	1.5µF	62kΩ	510Ω
250	0.015µF	0.82µF	68kΩ	470Ω
500	8200pF	0.39µF	62kΩ	470Ω
1k	3900pF	0.22µF	68kΩ	470Ω
2k	2000pF	0.1µF	68kΩ	470Ω
4k	1100pF	0.056µF	62kΩ	470Ω
8k	510pF	0.022µF	68kΩ	510Ω
16k	330pF	0.012µF	51k Ω	510Ω


Note 6: At volume of change = $\pm 12 \text{ dB}$

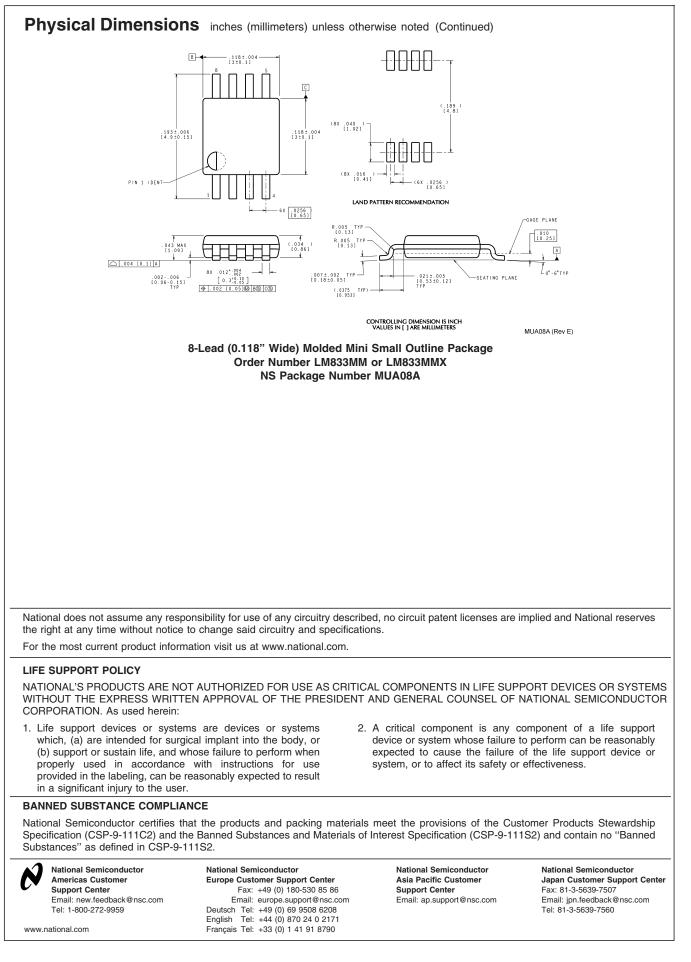
Q = 1.7

Reference: "AUDIO/RADIO HANDBOOK", National Semiconductor, 1980, Page 2-61

Typical Applications (Continued)

LM833 MDC MWC DUAL AUDIO OPERATIONAL AMPLIFIER

Die Layout (A - Step)


DIE/WAFER CHARACTERISTICS

Fabrication Attributes				General Die Information				
Physical Die Iden	LM833A		Bond Pad Opening Size (min)) 110µm	110µm x 110µm		
Die Step		A		Bond Pad	Metalization	ALUM	ALUMINUM	
	Physical Attribu	ites		Passivatio	n	VOM N	VOM NITRIDE	
Wafer Diameter		150mm	150mm Back Side		K Side Metal		BARE BACK	
Dise Size (Drawn)	1219µm x 1	270µm	Back Side	Connection	Floatin	Floating	
		48mils x 50r	nils					
Thickness		406µm Nom	inal					
Min Pitch		288µm Nom	inal					
Special Assem	bly Requirements:	1						
•	e size is rounded to t	he nearest micron						
	D	ie Bond Pad Coord	inate Lo	cations (A -	Step)			
	(Referenced	d to die center, coor	dinates i	in µm) NC =	= No Connection			
		X/Y COOI	X/Y COORDINATES		S PAD S			
SIGNAL NAME	PAD# NUMBER	Х		Y	Х		Y	
OUTPUT A	1	-476		500	110	x	110	
INPUT A-	2	-476	-	-212	110	x	110	
INPUT A+	3	-476	-	-500	110	x	110	
VEE-	4	-0	-	-500	110	x	110	
INPUT B+	5	476	-	-500	110	x	110	
INPUT B-	6	476	-	-212	110	x	110	
OUTPUT B	7	476		500	110	x	110	
VCC+	8	0		500	110	х	110	

Typical Applications (Continued)

IN U.S.A	
Tel #:	1 877 Dial Die 1 877 342 5343
Fax:	1 207 541 6140
IN EUROPE	
Tel:	49 (0) 8141 351492 / 1495
Fax:	49 (0) 8141 351470
IN ASIA PACIFIC	
Tel:	(852) 27371701
IN JAPAN	
Tel:	81 043 299 2308

